
Modern Time Series

This dataset is pulled from https://www.kaggle.com/datasets/robikscube/hourly-energy-

consumption/data?select=AEP_hourly.csv, and shows the American Electric Power (AEP)

hourly load series (2004–2018). It contains the megawatts (MW) of power usage

recorded hourly. Electricity demand is a coincident indicator of economic activity and

weather—heat waves, cold snaps, holidays, and industrial cycles all drive load.

# Import all libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.metrics import mean_squared_error, mean_absolute_error
from prophet import Prophet
from prophet.diagnostics import cross_validation, performance_metrics

# Prep the data

# Read hourly AEP data and aggregate to daily mean
aep = pd.read_csv("/users/tiffanytruong/Documents/APAN5420/AEP_hourly.csv")
aep["Datetime"] = pd.to_datetime(aep["Datetime"])
aep = aep.rename(columns={"Datetime":"Date", "AEP_MW":"MW"}).set_index("Date

# Aggregate to daily means
aep_daily = aep.resample("D").mean()

print(aep_daily.isna().sum())
aep_daily.head()

MW    0
dtype: int64

MW

Date

2004-10-01 14284.521739

2004-10-02 12999.875000

2004-10-03 12227.083333

2004-10-04 14309.041667

2004-10-05 14439.708333

# Plot Initial Data 

plt.figure(figsize=(12,4))
plt.plot(aep_daily.index, aep_daily["MW"], color="steelblue", linewidth=1)
plt.title("AEP Power Usage: Daily Average (MW)")
plt.xlabel("Date"); plt.ylabel("MW")

In [1]:

In [2]:

Out[2]:

In [3]:

https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption/data?select=AEP_hourly.csv
https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption/data?select=AEP_hourly.csv


plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout()
plt.show()

1. Simple moving average

The SMA smooths short-term fluctuations by taking the average of the last 14 days (≈2

weeks). This balances noise reduction with responsiveness to recent changes. I also

compute deviations (Actual − SMA) to see how far daily demand strays from the local

trend.

# 14-day SMA and residuals
sma_df = aep_daily.copy()
sma_df["SMA_14"] = sma_df["MW"].rolling(window=14).mean()
sma_df["SMA_Diff"] = sma_df["MW"] - sma_df["SMA_14"]

# Plot with SMA line
plt.figure(figsize=(12,4))
plt.plot(sma_df.index, sma_df["MW"], label="Daily Avg MW", color="blue")
plt.plot(sma_df.index, sma_df["SMA_14"], label="2-week SMA", color="orange",
plt.title("AEP Daily Average and 2-week SMA")
plt.xlabel("Date"); plt.ylabel("MW")
plt.grid(True, linestyle="--", alpha=0.5)
plt.legend()
plt.tight_layout()
plt.show()

# Distribution of deviations (Actual − SMA)
plt.figure(figsize=(10,4))
plt.hist(sma_df["SMA_Diff"].dropna(), bins=24, color="lightgreen", edgecolor
plt.title("Distribution of Daily Deviations from 2-week SMA")
plt.xlabel("Difference (MW - SMA_14)"); plt.ylabel("Frequency")
plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout()
plt.show()

In [4]:



The SMA line smooths jagged daily values into a stable trend. Large positive deviations

often represent heat-driven surges; large negative deviations could reflect

holidays/outages. Because SMA weights all recent days equally, it’s a simple baseline for

highlighting sudden spikes that break recent history.

SMA Tolerance Bands (Fixed vs Rolling)

To detect anomalies, I construct two bands around the SMA line:

Fixed band: ±1500 MW around the SMA. Flags large structural breaks.

Rolling STD band: ±2 standard deviations over the past 14 days. Adapts to local

volatility.

Days outside each band are potential anomalies.

# Fixed vs rolling bands
fixed_band = 1500  # tweak if needed after viewing plot

sma_df["Upper_fixed"] = sma_df["SMA_14"] + fixed_band
sma_df["Lower_fixed"] = sma_df["SMA_14"] - fixed_band

roll_std = sma_df["MW"].rolling(window=14).std()
sma_df["Upper_roll"] = sma_df["SMA_14"] + 2*roll_std
sma_df["Lower_roll"] = sma_df["SMA_14"] - 2*roll_std
sma_df = sma_df.dropna()

In [5]:



plt.figure(figsize=(12,4))
plt.fill_between(sma_df.index, sma_df["Lower_roll"], sma_df["Upper_roll"],
                 color="red", alpha=0.25, label="Rolling STD band (±2σ)")
plt.fill_between(sma_df.index, sma_df["Lower_fixed"], sma_df["Upper_fixed"],
                 color="moccasin", alpha=0.45, label=f"Fixed band (±{fixed_b
plt.scatter(sma_df.index, sma_df["MW"], s=8, color="blue", label="Daily Avg 
plt.title("AEP: SMA Tolerance Bands (Fixed vs Rolling)")
plt.xlabel("Date"); plt.ylabel("MW")
plt.grid(True, linestyle="--", alpha=0.5)
plt.legend()
plt.tight_layout()
plt.show()

The rolling band tightens in calm periods and widens in volatile ones; the fixed band

stays constant and can better highlight major regime shifts (e.g., heat waves, outages).

Using both gives context and reduces false positives.

2. Exponential Smoothing (EMA / SES)

Exponential smoothing assigns more weight to recent days, reacting faster to trend

changes than SMA. I tune alpha via a chronological split (train / validation / test) and

report RMSE/MAE for diagnostics “through all periods,” per the assignment's

instructions.

series = aep_daily["MW"].dropna()
n = len(series)
n_train = int(0.7*n)
n_val   = int(0.15*n)

train = series.iloc[:n_train]
val   = series.iloc[n_train:n_train+n_val]
test  = series.iloc[n_train+n_val:]

alphas = np.linspace(0.01, 1.0, 60)
mse_scores = []

from statsmodels.tsa.holtwinters import SimpleExpSmoothing

for alpha in alphas:
    model = SimpleExpSmoothing(train).fit(smoothing_level=alpha, optimized=F

In [6]:



    forecast = model.forecast(len(val))
    mse_scores.append(mean_squared_error(val, forecast))

best_alpha = alphas[int(np.argmin(mse_scores))]
best_alpha

0.01

# Fit on train, evaluate val; then fit on train+val, evaluate test
from statsmodels.tsa.holtwinters import SimpleExpSmoothing

ema_train_model = SimpleExpSmoothing(train).fit(smoothing_level=best_alpha, 
fitted_train = ema_train_model.fittedvalues
forecast_val = ema_train_model.forecast(len(val))

ema_tv_model = SimpleExpSmoothing(pd.concat([train, val])).fit(smoothing_lev
forecast_test = ema_tv_model.forecast(len(test))

def metrics(y_true, y_pred):
    return {
        "RMSE": np.sqrt(mean_squared_error(y_true, y_pred)),
        "MAE": mean_absolute_error(y_true, y_pred),
    }

ema_metrics_train = metrics(train.iloc[1:], fitted_train.iloc[1:])  # drop f
ema_metrics_val   = metrics(val, forecast_val)
ema_metrics_test  = metrics(test, forecast_test)

ema_metrics_train, ema_metrics_val, ema_metrics_test

({'RMSE': 1855.8320002440082, 'MAE': 1501.903744450146},
{'RMSE': 1890.4800380041886, 'MAE': 1517.85938203982},
{'RMSE': 1913.0663233172738, 'MAE': 1489.8177408092558})

# Fit EMA on full series for visualization
ema_full = SimpleExpSmoothing(series).fit(smoothing_level=best_alpha, optimi

ema_df = aep_daily.copy()
ema_df["EMA"] = ema_full.fittedvalues.reindex(ema_df.index)

plt.figure(figsize=(12,4))
plt.plot(ema_df.index, ema_df["MW"], label="Actual", color="blue")
plt.plot(ema_df.index, ema_df["EMA"], label=f"EMA (alpha={best_alpha:.2f})",
plt.title("AEP: Actual vs EMA")
plt.xlabel("Date"); plt.ylabel("MW")
plt.grid(True, linestyle="--", alpha=0.5)
plt.legend(); plt.tight_layout(); plt.show()

# Residuals and tolerance band (±2σ of residuals)
ema_df["Diff"] = ema_df["MW"] - ema_df["EMA"]

plt.figure(figsize=(10,4))
plt.hist(ema_df["Diff"].dropna(), bins=24, color="lightgreen", edgecolor="bl
plt.title("Distribution of Differences from EMA (Actual - EMA)")
plt.xlabel("Difference (MW)"); plt.ylabel("Frequency")
plt.grid(True, linestyle="--", alpha=0.5)

Out[6]:

In [7]:

Out[7]:

In [8]:



plt.tight_layout(); plt.show()

band = 2 * ema_df["Diff"].std()
ema_df["Upper"] = ema_df["EMA"] + band
ema_df["Lower"] = ema_df["EMA"] - band

plt.figure(figsize=(12,4))
plt.scatter(ema_df.index, ema_df["MW"], s=8, label="Daily Avg MW", color="bl
plt.fill_between(ema_df.index, ema_df["Lower"], ema_df["Upper"],
                 color="gray", alpha=0.3, label="Tolerance Band (±2σ)")
plt.title("EMA with Tolerance Band")
plt.xlabel("Date"); plt.ylabel("MW")
plt.grid(True, linestyle="--", alpha=0.5)
plt.legend(); plt.tight_layout(); plt.show()

Exponential Smoothing (EMA) — Model Diagnostics



To evaluate the performance of the EMA model, the dataset was split chronologically

into training (70%), validation (15%), and test (15%) sets.

The model’s smoothing parameter α was tuned using a grid search to minimize the Mean

Squared Error (MSE) on the validation set.

The table below summarizes the model’s predictive performance on all three splits using

two key metrics:

RMSE (Root Mean Squared Error) — measures the standard deviation of prediction

errors.

MAE (Mean Absolute Error) — measures the average magnitude of errors.

Dataset Split RMSE MAE

Train {{train_rmse}} {{train_mae}}

Validation {{val_rmse}} {{val_mae}}

Test {{test_rmse}} {{test_mae}}

The similar error magnitudes across splits indicate that the EMA model generalizes well

and is not overfitting. This supports its reliability for identifying anomalies as deviations

from expected behavior.

# Diagnostics table for EMA
metrics_df = pd.DataFrame(
    {
        "RMSE": [ema_metrics_train["RMSE"], ema_metrics_val["RMSE"], ema_met
        "MAE":  [ema_metrics_train["MAE"],  ema_metrics_val["MAE"],  ema_met
    },
    index=["Train","Validation","Test"]
)
print("EMA diagnostics (RMSE / MAE):")
display(metrics_df.round(2))

EMA diagnostics (RMSE / MAE):
RMSE MAE

Train 1855.83 1501.90

Validation 1890.48 1517.86

Test 1913.07 1489.82

# Plot MSE vs alpha from grid search

plt.figure(figsize=(8,4))
plt.plot(alphas, mse_scores, linewidth=1)
plt.title('EMA Alpha Tuning — Validation MSE')
plt.xlabel('alpha'); plt.ylabel('Validation MSE')
plt.grid(True, linestyle='--', alpha=0.5)
plt.tight_layout(); plt.show()

In [9]:

In [10]:



The plot above shows the validation MSE across different alpha values for the EMA

model. The chosen alpha corresponds to the minimum MSE, indicating the optimal

balance between responsiveness to recent data and smoothing of short-term noise.

3. Seasonal-Trend Decomposition (STD)

STD splits the series into trend, seasonal, and residual using an additive model. For daily

power, a strong weekly cycle exists; I use period=7. (Using period=365 emphasizes

yearly patterns.) Anomalies correspond to large residuals not explained by

trend/seasonality.

std_df = aep_daily.copy()
model = sm.tsa.seasonal_decompose(std_df["MW"], model="additive", period=7)

# Plot Trend Component
plt.figure(figsize=(12,3))
model.trend[1:400].plot()
plt.title("Trend Component (slice)")
plt.ylabel("MW"); plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout(); plt.show()

# Plot Seasonal Component
plt.figure(figsize=(12,3))
model.seasonal[1:60].plot()
plt.title("Seasonal Component (slice)")
plt.ylabel("MW"); plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout(); plt.show()

# Plot Residual Component
plt.figure(figsize=(12,3))
model.resid[1:400].plot()
plt.title("Residual Component (slice)")
plt.ylabel("MW"); plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout(); plt.show()

In [11]:



Trend: smooth long-term movements in average demand.

Seasonal: clear weekly pattern (lower weekends, higher weekdays), preventing

normal weekly swings from being flagged.

Residual: irregular spikes/dips — likely true anomalies such as extreme weather or

outages.

4. Prophet

Prophet is a generalized additive model that captures trend, weekly & yearly

seasonalities, and changepoints. It produces prediction intervals (yhat_lower,

yhat_upper). Any point outside this interval is anomalous. I provide validation/test

metrics to satisfy “diagnostics through all periods.”

# Prepare dataframe with required column names
prophet_df = aep_daily.reset_index().rename(columns={"Date":"ds", "MW":"y"})

# Core Prophet with weekly + yearly seasonality
m = Prophet(weekly_seasonality=True, yearly_seasonality=True, daily_seasonal
# (Optional) add a gentle monthly seasonality if you want a bit more flexibi
# m.add_seasonality(name='monthly', period=30.5, fourier_order=5)

m.fit(prophet_df)

# Retrospective fit only (no future periods)

In [12]:



future = m.make_future_dataframe(periods=0, freq="D")
fcst = m.predict(future)

# Merge fitted values + intervals and flag anomalies
merged = prophet_df.merge(
    fcst[["ds", "yhat", "yhat_lower", "yhat_upper"]],
    on="ds", how="left"
)
merged["anomaly"] = (merged["y"] < merged["yhat_lower"]) | (merged["y"] > me
merged["residual"] = merged["y"] - merged["yhat"]

print("Prophet: number of anomalies =", int(merged["anomaly"].sum()))
merged.head()

19:27:21 - cmdstanpy - INFO - Chain [1] start processing
19:27:21 - cmdstanpy - INFO - Chain [1] done processing
Prophet: number of anomalies = 920

ds y yhat yhat_lower yhat_upper anomaly res

0
2004-
10-01

14284.521739 14183.043914 12619.124089 15764.950228 False 101.47

1
2004-
10-02

12999.875000 12985.069401 11300.440218 14464.803005 False 14.80

2
2004-
10-03

12227.083333 12537.389275 11020.791110 14116.675842 False -310.30

3
2004-
10-04

14309.041667 14111.371387 12567.009795 15765.571841 False 197.67

4
2004-
10-05

14439.708333 14323.331017 12768.804925 15896.311928 False 116.3

# Forecast plot with interval and anomaly overlay
fig = m.plot(fcst)
plt.title("Prophet Fit with Uncertainty Interval (AEP Daily MW)")
plt.xlabel("Date"); plt.ylabel("MW")
plt.show()

# Overlay anomalies explicitly
plt.figure(figsize=(12,4))
plt.plot(merged["ds"], merged["y"], label="Actual", color="green", linewidth
plt.plot(merged["ds"], merged["yhat"], label="yhat (Prophet)", color="purple
plt.fill_between(merged["ds"], merged["yhat_lower"], merged["yhat_upper"],
                 alpha=0.25, label="Prediction Interval")
an = merged["anomaly"]
plt.scatter(merged.loc[an,"ds"], merged.loc[an,"y"],
            s=18, color="red", edgecolor="black", zorder=5, label="Anomaly")
plt.title("Prophet — Prediction Interval & Anomalies")
plt.xlabel("Date"); plt.ylabel("MW")
plt.legend(); plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout(); plt.show()

# Component plots (trend, weekly, yearly)

Out[12]:

In [13]:



m.plot_components(fcst)
plt.show()

# Residuals over time (nice complement to components)
plt.figure(figsize=(12,3))
plt.plot(merged["ds"], merged["residual"], linewidth=1)
plt.title("Prophet Residuals (Actual - yhat)")
plt.xlabel("Date"); plt.ylabel("Residual (MW)")
plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout(); plt.show()



Prophet’s interval captures expected variation after modeling trend and weekly/yearly

seasonality. Points outside the band are true anomalies not explained by systematic

patterns (e.g., extreme weather spikes or unusual load drops). The components confirm

the strong weekly cycle and a smooth long-term trend; residual spikes align with the

anomaly dates.

hist_days = (prophet_df["ds"].max() - prophet_df["ds"].min()).days
initial_days = max(int(0.6 * hist_days), 365*2)  # at least ~2 years

In [14]:



df_cv = cross_validation(
    model=m,
    initial=f"{initial_days} days",
    period="90 days",
    horizon="180 days",
    parallel=None  
)

df_p = performance_metrics(df_cv)

# Show summary
display(df_p[["horizon", "rmse", "mae", "mape"]].head())

# Aggregate across folds as a single table for the report
summary = df_p[["rmse","mae","mape"]].agg(["mean","median","std"]).T
summary.columns = ["Mean", "Median", "Std"]
print("Prophet CV diagnostics (aggregated across folds):")
display(summary.round(4))

 0%|          | 0/21 [00:00<?, ?it/s]



19:27:22 - cmdstanpy - INFO - Chain [1] start processing
19:27:23 - cmdstanpy - INFO - Chain [1] done processing
19:27:23 - cmdstanpy - INFO - Chain [1] start processing
19:27:23 - cmdstanpy - INFO - Chain [1] done processing
19:27:23 - cmdstanpy - INFO - Chain [1] start processing
19:27:23 - cmdstanpy - INFO - Chain [1] done processing
19:27:23 - cmdstanpy - INFO - Chain [1] start processing
19:27:24 - cmdstanpy - INFO - Chain [1] done processing
19:27:24 - cmdstanpy - INFO - Chain [1] start processing
19:27:24 - cmdstanpy - INFO - Chain [1] done processing
19:27:24 - cmdstanpy - INFO - Chain [1] start processing
19:27:24 - cmdstanpy - INFO - Chain [1] done processing
19:27:24 - cmdstanpy - INFO - Chain [1] start processing
19:27:25 - cmdstanpy - INFO - Chain [1] done processing
19:27:25 - cmdstanpy - INFO - Chain [1] start processing
19:27:25 - cmdstanpy - INFO - Chain [1] done processing
19:27:25 - cmdstanpy - INFO - Chain [1] start processing
19:27:25 - cmdstanpy - INFO - Chain [1] done processing
19:27:25 - cmdstanpy - INFO - Chain [1] start processing
19:27:26 - cmdstanpy - INFO - Chain [1] done processing
19:27:26 - cmdstanpy - INFO - Chain [1] start processing
19:27:26 - cmdstanpy - INFO - Chain [1] done processing
19:27:26 - cmdstanpy - INFO - Chain [1] start processing
19:27:26 - cmdstanpy - INFO - Chain [1] done processing
19:27:27 - cmdstanpy - INFO - Chain [1] start processing
19:27:27 - cmdstanpy - INFO - Chain [1] done processing
19:27:27 - cmdstanpy - INFO - Chain [1] start processing
19:27:27 - cmdstanpy - INFO - Chain [1] done processing
19:27:27 - cmdstanpy - INFO - Chain [1] start processing
19:27:28 - cmdstanpy - INFO - Chain [1] done processing
19:27:28 - cmdstanpy - INFO - Chain [1] start processing
19:27:28 - cmdstanpy - INFO - Chain [1] done processing
19:27:28 - cmdstanpy - INFO - Chain [1] start processing
19:27:28 - cmdstanpy - INFO - Chain [1] done processing
19:27:28 - cmdstanpy - INFO - Chain [1] start processing
19:27:29 - cmdstanpy - INFO - Chain [1] done processing
19:27:29 - cmdstanpy - INFO - Chain [1] start processing
19:27:29 - cmdstanpy - INFO - Chain [1] done processing
19:27:29 - cmdstanpy - INFO - Chain [1] start processing
19:27:30 - cmdstanpy - INFO - Chain [1] done processing
19:27:30 - cmdstanpy - INFO - Chain [1] start processing
19:27:30 - cmdstanpy - INFO - Chain [1] done processing

horizon rmse mae mape

0 18 days 1326.115217 1063.779179 0.070909

1 19 days 1339.187479 1075.939135 0.072107

2 20 days 1354.580355 1085.149359 0.072829

3 21 days 1352.677765 1085.600808 0.073039

4 22 days 1352.674784 1086.505291 0.073286

Prophet CV diagnostics (aggregated across folds):



Mean Median Std

rmse 1393.5769 1378.1782 93.3247

mae 1043.6332 1043.2890 46.5228

mape 0.0687 0.0684 0.0037

After cross-validation, I think it is also useful to examine the residuals(Actual −

Predicted) from the in-sample fit.

Residuals show if there are systematic patterns not captured. Ideally, they should center

around zero and appear as white noise.

# Compute residuals if not already present
merged["residual"] = merged["y"] - merged["yhat"]

# Residual plot over time
plt.figure(figsize=(12,4))
plt.plot(merged["ds"], merged["residual"], linewidth=1, color="black")
plt.axhline(0, color="red", linestyle="--", linewidth=1)
plt.title("Prophet Residuals (Actual - Fitted)")
plt.xlabel("Date")
plt.ylabel("Residual (MW)")
plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout()
plt.show()

The residuals oscillate around zero with no strong long-term drift, suggesting that

Prophet has captured the major trend and seasonal structures. The occasional spikes

align with anomaly dates, confirming that these points deviate sharply from the expected

load.

Conclusion

SMA flagged sudden spikes in daily load by comparing each day to the 2-week

average. Its equal weighting makes it good for catching short-lived anomalies.

EMA (SES) adapted faster to trend shifts and highlighted anomalies as large

deviations from its smoothed curve. Train/validation/test RMSE and MAE provided

In [15]:



performance diagnostics across all periods.

STD separated the long-term load trend, weekly seasonality, and residual noise,

cleanly isolating unpredictable days as residual spikes.

Prophet combined trend, multiple seasonalities, and changepoints, using prediction

intervals to robustly flag outliers. Cross-validation RMSE/MAE quantified its

forecasting performance over time.

Why each can identify anomalies

SMA/EMA: flag unexpected deviations from recent history.

STD: flags residual spikes unexplained by trend/seasonality.

Prophet: flags values outside a principled uncertainty band after modeling complex

patterns.


