Modern Time Series

This dataset is pulled from https://www.kaggle.com/datasets/robikscube/hourly-energy-
consumption/data?select=AEP_hourly.csv, and shows the American Electric Power (AEP)
hourly load series (2004-2018). It contains the megawatts (MW) of power usage
recorded hourly. Electricity demand is a coincident indicator of economic activity and
weather—heat waves, cold snaps, holidays, and industrial cycles all drive load.

Import all libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import statsmodels.api as sm

from sklearn.metrics import mean_squared_error, mean_absolute_error
from prophet import Prophet

from prophet.diagnostics import cross_validation, performance_metrics

Prep the data

Read hourly AEP data and aggregate to daily mean
aep = pd.read_csv("/users/tiffanytruong/Documents/APAN5420/AEP_hourly.csv")
aep["Datetime"] = pd.to_datetime(aep["Datetime"])
aep = aep.rename(columns={"Datetime":"Date", "AEP_MW":"MW"}).set_index("Date

Aggregate to daily means
aep_daily = aep.resample("D").mean()

print(aep_daily.isna().sum())
aep_daily.head()

Mw 0
dtype: int64

MW

Date
2004-10-01 14284.521739
2004-10-02 12999.875000
2004-10-03 12227.083333
2004-10-04 14309.041667

2004-10-05 14439.708333

Plot Initial Data

plt.figure(figsize=(12,4))

plt.plot(aep_daily.index, aep_daily["MW"], color="steelblue", linewidth=1)
plt.title("AEP Power Usage: Daily Average (Mw)")

plt.xlabel("Date"); plt.ylabel("MW")

https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption/data?select=AEP_hourly.csv
https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption/data?select=AEP_hourly.csv

plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout()
plt.show()

AEP Power Usage: Daily Average (MW)

22000 A
20000 A |

18000 | ‘ [

16000 |

14000 | ‘ i | | ‘

12000 A |

T T T T T T T
2006 2008 2010 2012 2014 2016 2018
Date

1. Simple moving average

The SMA smooths short-term fluctuations by taking the average of the last 14 days (=2
weeks). This balances noise reduction with responsiveness to recent changes. | also
compute deviations (Actual — SMA) to see how far daily demand strays from the local
trend.

14-day SMA and residuals

sma_df = aep_daily.copy()

sma_df["SMA_14"] = sma_df["MW"].rolling(window=14) .mean()
sma_df ["SMA_Diff"] = sma_df["MW"] - sma_df["SMA_14"]

Plot with SMA line

plt.figure(figsize=(12,4))

plt.plot(sma_df.index, sma_df["MW"], label="Daily Avg MW", color="blue")
plt.plot(sma_df.index, sma_df["SMA_14"], label="2-week SMA", color="orange",
plt.title("AEP Daily Average and 2-week SMA")

plt.xlabel("Date"); plt.ylabel("MW")

plt.grid(True, linestyle="--", alpha=0.5)

plt.legend()

plt.tight_layout()

plt.show()

Distribution of deviations (Actual — SMA)

plt.figure(figsize=(10,4))

plt.hist(sma_df["SMA_Diff"].dropna(), bins=24, color="1lightgreen", edgecolor
plt.title("Distribution of Daily Deviations from 2-week SMA")
plt.xlabel("Difference (MW - SMA_14)"); plt.ylabel("Frequency")
plt.grid(True, linestyle="--", alpha=0.5)

plt.tight_layout()

plt.show()

MW

Frequency

AEP Daily Average and 2-week SMA

—— Daily Avg MW

22000 1 2-week SMA

20000

18000 4

16000 4

14000 A

12000 A

T T T T T T T
2006 2008 2010 2012 2014 2016 2018
Date

Distribution of Daily Deviations from 2-week SMA

700 A i

T T T T T
—4000 —2000 0 2000 4000 6000
Difference (MW - SMA_14)

The SMA line smooths jagged daily values into a stable trend. Large positive deviations
often represent heat-driven surges; large negative deviations could reflect
holidays/outages. Because SMA weights all recent days equally, it's a simple baseline for
highlighting sudden spikes that break recent history.

SMA Tolerance Bands (Fixed vs Rolling)

To detect anomalies, | construct two bands around the SMA line:

e Fixed band: +1500 MW around the SMA. Flags large structural breaks.
e Rolling STD band: +2 standard deviations over the past 14 days. Adapts to local
volatility.

Days outside each band are potential anomalies.

Fixed vs rolling bands
fixed_band = 1500 # tweak if needed after viewing plot

sma_df ["SMA_14"] + fixed_band
sma_df["SMA_14"] - fixed_band

sma_df ["Upper_fixed"]
sma_df["Lower_fixed"]

roll_std = sma_df["MW"].rolling(window=14).std()
sma_df ["Upper_roll"] = sma_df["SMA_14"] + 2xroll_std
sma_df["Lower_roll"] = sma_df["SMA_14"] - 2xroll_std
sma_df = sma_df.dropna()

MW

plt.figure(figsize=(12,4))

plt.fill_between(sma_df.index, sma_df["Lower_roll"], sma_df["Upper_roll"],
color="red", alpha=0.25, label="Rolling STD band (%20)")

plt.fill_between(sma_df.index, sma_df["Lower_fixed"], sma_df["Upper_fixed"],
color="moccasin", alpha=0.45, label=f"Fixed band (x{fixed_t

plt.scatter(sma_df.index, sma_df["MW"], s=8, color="blue", label="Daily Avg

plt.title("AEP: SMA Tolerance Bands (Fixed vs Rolling)")

plt.xlabel("Date"); plt.ylabel("MW")

plt.grid(True, linestyle="--", alpha=0.5)

plt.legend()

plt.tight_layout()

plt.show()
AEP: SMA Tolerance Bands (Fixed vs Rolling)
24000 4 Rolling STD band (+2a)
i 4 Fixed band (1500 MW)
22000 1 . 4 i 1l « Daily Avg MW

20000

18000 -

16000 -

14000 -

12000

10000 -

T T T T T T T
2006 2008 2010 2012 2014 2016 2018

The rolling band tightens in calm periods and widens in volatile ones; the fixed band
stays constant and can better highlight major regime shifts (e.g., heat waves, outages).
Using both gives context and reduces false positives.

2. Exponential Smoothing (EMA [/ SES)

Exponential smoothing assigns more weight to recent days, reacting faster to trend
changes than SMA. | tune alpha via a chronological split (train / validation / test) and
report RMSE/MAE for diagnostics “through all periods,” per the assignment's
instructions.

series = aep_daily["MW"].dropna()
n = len(series)
n_train = int(0.7x%n)

n_val = int(0.15%n)

train = series.iloc[:n_train]

val = series.iloc[n_train:n_train+n_vall]
test = series.ilocln_train+n_val:]

alphas = np.linspace(0.01, 1.0, 60)
mse_scores = []

from statsmodels.tsa.holtwinters import SimpleExpSmoothing

for alpha in alphas:
model = SimpleExpSmoothing(train).fit(smoothing_level=alpha, optimized=F

forecast = model.forecast(len(val))
mse_scores.append(mean_squared_error(val, forecast))

best_alpha = alphas([int(np.argmin(mse_scores))]
best_alpha

0.01

Fit on train, evaluate val; then fit on train+val, evaluate test
from statsmodels.tsa.holtwinters import SimpleExpSmoothing

ema_train_model = SimpleExpSmoothing(train).fit(smoothing_level=best_alpha,
fitted_train = ema_train_model.fittedvalues
forecast_val = ema_train_model.forecast(len(val))

ema_tv_model = SimpleExpSmoothing(pd.concat([train, vall)).fit(smoothing_lev
forecast_test = ema_tv_model.forecast(len(test))

def metrics(y_true, y_pred):
return {
"RMSE": np.sqrt(mean_squared_error(y_true, y _pred)),
"MAE": mean_absolute_error(y_true, y_pred),

}

ema_metrics_train
ema_metrics_val
ema_metrics_test

metrics(train.iloc[1:], fitted_train.iloc([1:]1) # drop 1
metrics(val, forecast_val)
metrics(test, forecast_test)

ema_metrics_train, ema_metrics_val, ema_metrics_test

({'RMSE': 1855.8320002440082, 'MAE': 1501.903744450146},
{'RMSE': 1890.4800380041886, 'MAE': 1517.85938203982},
{'RMSE': 1913.0663233172738, 'MAE': 1489.8177408092558})

Fit EMA on full series for visualization
ema_full = SimpleExpSmoothing(series).fit(smoothing_level=best_alpha, optimi

ema_df = aep_daily.copy()
ema_df["EMA"] = ema_full.fittedvalues.reindex(ema_df.index)

plt.figure(figsize=(12,4))

plt.plot(ema_df.index, ema_df["MW"], label="Actual", color="blue")
plt.plot(ema_df.index, ema_df["EMA"], label=f"EMA (alpha={best_alpha:.2f})",
plt.title("AEP: Actual vs EMA")

plt.xlabel("Date"); plt.ylabel("MW")

plt.grid(True, linestyle="--", alpha=0.5)

plt.legend(); plt.tight_layout(); plt.show()

Residuals and tolerance band (*20 of residuals)
ema_df["Diff"] = ema_df["MW"] - ema_df["EMA"]

plt.figure(figsize=(10,4))

plt.hist(ema_df["Diff"].dropna(), bins=24, color="1lightgreen", edgecolor="bl
plt.title("Distribution of Differences from EMA (Actual - EMA)")
plt.xlabel("Difference (MW)"); plt.ylabel("Frequency")

plt.grid(True, linestyle="—-", alpha=0.5)

plt.

tight_layout(); plt.show()

band = 2 * ema_df["Diff"].std()

ema_
ema_

plt.
.scatter(ema_df.index, ema_df["MW"], s=8, label="Daily Avg MW", color="bl
plt.

plt

plt
plt

df ["Upper"] = ema_df["EMA"] + band
df ["Lower"] = ema_df["EMA"] - band

figure(figsize=(12,4))

fill_between(ema_df.index, ema_df["Lower"], ema_df["Upper"],
color="gray", alpha=0.3, label="Tolerance Band (+2c)")

.title("EMA with Tolerance Band")
.xlabel("Date"); plt.ylabel("MW")
plt.
plt.

grid(True, linestyle="--", alpha=0.5)
legend(); plt.tight_layout(); plt.show()

AEP: Actual vs EMA

22000

20000

18000 A

MW

16000 4

14000 A

12000 A

— Actual
—— EMA (alpha=0.01)

YV R K

T T T T T T T
2006 2008 2010 2012 2014 2016 2018
Date

Distribution of Differences from EMA (Actual - EMA)

500 A

400 A

Frequency
w
=]
=]
1

200 A

100

o4

T T T
2000 4000 6000
Difference (MW)

T T
—4000 —2000

EMA with Tolerance Band

22000
20000
18000 -

=

= 16000 -
14000 A

12000 4

10000 4

« Daily Avg MW
Tolerance Band (+20)

Exponential Smoothing (EMA) — Model Diagnostics

To evaluate the performance of the EMA model, the dataset was split chronologically
into training (70%), validation (15%), and test (15%) sets.

The model’s smoothing parameter a was tuned using a grid search to minimize the Mean
Squared Error (MSE) on the validation set.

The table below summarizes the model's predictive performance on all three splits using
two key metrics:

e RMSE (Root Mean Squared Error) — measures the standard deviation of prediction
errors.
o MAE (Mean Absolute Error) — measures the average magnitude of errors.

Dataset Split RMSE MAE
Train {{train_rmse}} {{train_mae}}
Validation {{val_rmse}} {{val_mae}}
Test {{test_rmse}} {{test_mae}}

The similar error magnitudes across splits indicate that the EMA model generalizes well
and is not overfitting. This supports its reliability for identifying anomalies as deviations
from expected behavior.

Diagnostics table for EMA
metrics_df = pd.DataFrame(
{
"RMSE": [ema_metrics_train["RMSE"], ema_metrics_val["RMSE"], ema_met
"MAE": [ema_metrics_train["MAE"], ema_metrics_val["MAE"], ema_met
I
index=["Train","Validation","Test"]
)
print("EMA diagnostics (RMSE / MAE):")
display(metrics_df.round(2))

EMA diagnostics (RMSE / MAE):
RMSE MAE
Train 1855.83 1501.90
Validation 1890.48 1517.86

Test 1913.07 1489.82

Plot MSE vs alpha from grid search

plt.figure(figsize=(8,4))

plt.plot(alphas, mse_scores, linewidth=1)
plt.title('EMA Alpha Tuning — Validation MSE')
plt.xlabel('alpha'); plt.ylabel('Validation MSE')
plt.grid(True, linestyle='—-', alpha=0.5)
plt.tight_layout(); plt.show()

1e6 EMA Alpha Tuning — Validation MSE

7.5 1

7.0

6.5

6.0

5.5

Validation MSE

5.0

4.5 A

4.0

3.5 1

0.0 0.2 0.4 0.6 0.8 1.0
alpha

The plot above shows the validation MSE across different alpha values for the EMA
model. The chosen alpha corresponds to the minimum MSE, indicating the optimal
balance between responsiveness to recent data and smoothing of short-term noise.

3. Seasonal-Trend Decomposition (STD)

STD splits the series into trend, seasonal, and residual using an additive model. For daily
power, a strong weekly cycle exists; | use period=7. (Using period=365 emphasizes
yearly patterns.) Anomalies correspond to large residuals not explained by
trend/seasonality.

std_df = aep_daily.copy()
model = sm.tsa.seasonal_decompose(std_df["MW"], model="additive", period=7)

Plot Trend Component

plt.figure(figsize=(12,3))

model.trend[1:400].plot()

plt.title("Trend Component (slice)")

plt.ylabel("MW"); plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout(); plt.show()

Plot Seasonal Component

plt.figure(figsize=(12,3))

model.seasonal[1:60].plot()

plt.title("Seasonal Component (slice)")

plt.ylabel("MW"); plt.grid(True, linestyle="—-", alpha=0.5)
plt.tight_layout(); plt.show()

Plot Residual Component

plt.figure(figsize=(12,3))

model.resid[1:400].plot()

plt.title("Residual Component (slice)")

plt.ylabel("MW"); plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout(); plt.show()

Trend Component (slice)

18000 -

g 16000 4
14000 4
T T T T T T T T T T T T T
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
2005
Date
Seasonal Component (slice)
500
0 4
E —500 1
—1000 -
04 11 18 25 08 15 22 29
Nov
2004
Date
Residual Component (slice)
3000
2000
1000 1

—1000 4

—2000 4

T T T T T T T T T T T T T
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
2005
Date

e Trend: smooth long-term movements in average demand.

e Seasonal: clear weekly pattern (lower weekends, higher weekdays), preventing
normal weekly swings from being flagged.

e Residual: irregular spikes/dips — likely true anomalies such as extreme weather or
outages.

4. Prophet

Prophet is a generalized additive model that captures trend, weekly & yearly
seasonalities, and changepoints. It produces prediction intervals (yhat_lower,
yhat_upper). Any point outside this interval is anomalous. | provide validation/test
metrics to satisfy “diagnostics through all periods.”

Prepare dataframe with required column names
prophet_df = aep_daily.reset_index().rename(columns={"Date":"ds", "MW":"y"})

Core Prophet with weekly + yearly seasonality

= Prophet(weekly_seasonality=True, yearly_seasonality=True, daily_seasonal
(Optional) add a gentle monthly seasonality if you want a bit more flexibi
m.add_seasonality(name="monthly', period=30.5, fourier_order=5)

#* # 3 H

3

.fit(prophet_df)

H

Retrospective fit only (no future periods)

future = m.make_future_dataframe(periods=0, freq="D")
fcst = m.predict(future)

Merge fitted values + intervals and flag anomalies
merged = prophet_df.merge(
fcst[["ds", "yhat", "yhat_lower", "yhat_upper"ll],
on="ds", how="left"

)

merged["anomaly"] = (merged["y"] < merged["yhat_lower"]) | (merged["y"] > me

merged["residual”] = merged["y"] - merged["yhat"]

print("Prophet: number of anomalies =", int(merged["anomaly"].sum()))

merged.head()

19:27:21 - cmdstanpy - INFO - Chain [1] start processing
19:27:21 - cmdstanpy - INFO - Chain [1] done processing
Prophet: number of anomalies = 920

ds y yhat yhat_lower yhat_upper ano

2004-

0 10-01 14284.521739 14183.043914 12619.124089 15764.950228
2004-

1 10-02 12999.875000 12985.069401 11300.440218 14464.803005
2004-

2 10-03 12227.083333 12537.389275 11020.791110 14116.675842
2004-

3 10-04 14309.041667 14111.371387 12567.009795 15765.571841
2004-

4 10-05 14439.708333 14323.331017 12768.804925 15896.311928

Forecast plot with interval and anomaly overlay

fig = m.plot(fcst)

plt.title("Prophet Fit with Uncertainty Interval (AEP Daily MW)")
plt.xlabel("Date"); plt.ylabel("MW")

plt.show()

Overlay anomalies explicitly
plt.figure(figsize=(12,4))

maly

False

False

False

False

False

re:

101.4

14.8(

-310.3(

197.6

116.3

plt.plot(merged["ds"], merged["y"], label="Actual", color="green", linewidtt
plt.plot(merged["ds"], merged["yhat"], label="yhat (Prophet)", color="purple
plt.fill_between(merged["ds"], merged["yhat_lower"], merged["yhat_upper"],

alpha=0.25, label="Prediction Interval")
an = merged["anomaly"]
plt.scatter(merged.loc[an,"ds"], merged.loclan,"y"],

s=18, color="red", edgecolor="black", zorder=5, label="Anomaly")

plt.title("Prophet — Prediction Interval & Anomalies")
plt.xlabel("Date"); plt.ylabel("Mw")

plt.legend(); plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout(); plt.show()

Component plots (trend, weekly, yearly)

m.plot_components(fcst)
plt.show()

Residuals over time (nice complement to components)
plt.figure(figsize=(12,3))

plt.plot(merged["ds"], merged["residual"], linewidth=1)
plt.title("Prophet Residuals (Actual - yhat)")
plt.xlabel("Date"); plt.ylabel("Residual (Mw)")
plt.grid(True, linestyle="--", alpha=0.5)
plt.tight_layout(); plt.show()

Prophet Fit with Uncertainty Interval (AEP Daily MW)

.
L]
* .
22000 1 .] .
L]
s s ’. .
LY R 9 A . . ' * 3
. .
s 8 (] . []
20000 +] ‘e L . *s 3
» L] .
i 4 2 3 y E
v o .J- a8
18000 - o5
E 16000 +
14000 -
12000 1
.
10000 -
T T T T T T T
2006 2008 2010 2012 2014 2016 2018
Date
Prophet — Prediction Interval & Anomalies
—— Actual
22000 1 —— yhat (Prophet)
Prediction Interval
20000 1 e Anomaly
18000 A ;
I
% 16000 -

T L'
) [&

14000 4

12000 4

10000 A

T T T T T T T
2006 2008 2010 2012 2014 2016 2018
Date

trend

weekly

yearly

Residual (MW)

16500

16000

15500 A

15000

14500

T T T T T T T
2006 2008 2010 2012 2014 2016 2018

500 A

—500 ~

—1000 4

Day of week

Sunlday Monlday Tueslday Wednlesday Thurlsday Fric;ay Satulrday

2000 ~

1000 ~

—1000 4

—2000 +

January 1 March 1 May 1 July 1 September 1 November 1 January 1

Day of year

Prophet Residuals (Actual - yhat)

6000 -

4000 -

2000 -

—2000 4

—4000

2006 2008 2010] tzo'lz 2014 2016 2018
Prophet’s interval captures expected variation after modeling trend and weekly/yearly
seasonality. Points outside the band are true anomalies not explained by systematic
patterns (e.g., extreme weather spikes or unusual load drops). The components confirm
the strong weekly cycle and a smooth long-term trend; residual spikes align with the
anomaly dates.

hist_days = (prophet_df["ds"].max() - prophet_df["ds"].min()).days
initial_days = max(int(0.6 x hist_days), 365%2) # at least ~2 years

df_cv = cross_validation(
model=m,
initial=f"{initial_days} days",
period="90 days",
horizon="180 days",
parallel=None

)

df_p = performance_metrics(df_cv)

Show summary
display(df_p[["horizon", "rmse", "mae", "mape"]]l.head())

Aggregate across folds as a single table for the report

summary = df_p[["rmse","mae","mape"]].agg(["mean","median","std"]).T
summary.columns = ["Mean", "Median", "Std"]

print("Prophet CV diagnostics (aggregated across folds):")
display(summary.round(4))

0%| | 0/21 [00:00<?, ?it/s]

19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:

27:
27:
27:
27:
27:
27:23
27:23
27:24
27:24
27:24
27:24
27:24
27:24
27:25
27:25
27:25
27:25
27:25
27:25
27:26
27:26
27:26
27:26
27:26
27:27
27:27
27:27
27:27
27:27
27:28
27:28
27:28
27:28
27:28
27:28
27:29
27:29
27:29
27:29
27:30
27:30
27:30

horizon

22
23
23
23
23

18 days
19 days
20 days
21 days

22 days

cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy
cmdstanpy

rmse
1326.115217

1339.187479

1354.580355

1352.677765

1352.674784

INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO — Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
INFO - Chain [1] start processing
INFO - Chain [1] done processing
mae mape
1063.779179 0.070909
1075.939135 0.072107
1085.149359 0.072829
1085.600808 0.073039
1086.505291 0.073286

Prophet CV diagnostics (aggregated across folds):

Mean Median Std
rmse 1393.5769 1378.1782 93.3247

mae 1043.6332 1043.2890 46.5228

mape 0.0687 0.0684 0.0037

Residual (MW)

After cross-validation, | think it is also useful to examine the residuals(Actual -
Predicted) from the in-sample fit.

Residuals show if there are systematic patterns not captured. Ideally, they should center
around zero and appear as white noise.

Compute residuals if not already present
merged["residual”] = merged["y"] - merged["yhat"]

Residual plot over time

plt.figure(figsize=(12,4))

plt.plot(merged["ds"], merged["residual"], linewidth=1, color="black")
plt.axhline(@, color="red", linestyle="--", linewidth=1)
plt.title("Prophet Residuals (Actual - Fitted)")

plt.xlabel("Date")

plt.ylabel("Residual (Mw)")

plt.grid(True, linestyle="--", alpha=0.5)

plt.tight_layout()

plt.show()

Prophet Residuals (Actual - Fitted)

6000

4000

2000

—2000 4

—4000 4

20‘06 ZDbB 2610 20‘12 20‘14 20‘16 20‘18
Date
The residuals oscillate around zero with no strong long-term drift, suggesting that
Prophet has captured the major trend and seasonal structures. The occasional spikes
align with anomaly dates, confirming that these points deviate sharply from the expected
load.

Conclusion

e SMA flagged sudden spikes in daily load by comparing each day to the 2-week
average. Its equal weighting makes it good for catching short-lived anomalies.
e EMA (SES) adapted faster to trend shifts and highlighted anomalies as large

deviations from its smoothed curve. Train/validation/test RMSE and MAE provided

performance diagnostics across all periods.

e STD separated the long-term load trend, weekly seasonality, and residual noise,
cleanly isolating unpredictable days as residual spikes.

e Prophet combined trend, multiple seasonalities, and changepoints, using prediction
intervals to robustly flag outliers. Cross-validation RMSE/MAE quantified its
forecasting performance over time.

Why each can identify anomalies

o SMA/EMA: flag unexpected deviations from recent history.

e STD: flags residual spikes unexplained by trend/seasonality.

¢ Prophet: flags values outside a principled uncertainty band after modeling complex
patterns.

