PCA & iForest

This notebook applies two unsupervised methods to the feature-engineered credit card
transactions: PCA & Isolation Forest.

e PCA (Principal Component Analysis) projects data into directions of maximum
variance and flags points with large reconstruction error or extreme component
scores as outliers.

e |solation Forest isolates anomalies quickly via random splits; rare, “easy-to-
separate” points receive higher anomaly scores.

Dataset: feature-engineered credit card transactions
Model setup: numeric features standardized; contamination set to 5% for both

methods.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
from pyod.models.pca import PCA as PyODPCA

from pyod.models.iforest import IForest

from IPython.display import display

pd.set_option("display.max_columns", None)
plt.rcParams["figure.figsize"] = (8, 5)

1. Prepare the Data

PATH = "/users/tiffanytruong/Documents/APAN5420/df_model.csv"
df = pd.read_csv(PATH)

Keep untouched copy for joining model outputs later
df_full = df.copy()

Drop Descriptive/text/ID columns before unsupervised modeling
drop_text_cols = [
"Unnamed: @', 'Year-Month', 'Agency Number', 'Agency Name',
'Cardholder Last Name', 'Cardholder First Initial', 'cardholder_full_nan
'Description', 'Vendor', 'Transaction Date', 'Posted Date',
'Merchant Category Code (MCC)', 'Weekend', 'Day of Week',
'"Quarter', 'Week_Number', 'Year'

]
df_model = df.drop(columns=[c for c in drop_text_cols if c¢ in df.columns], ¢
Convert any booleans to integers

for ¢ in df_model.columns:
if df_modell[c].dtype == bool:

df_model[c] = df_modell[c].astype(int)

Keep only numeric cols since Py0OD expects numeric features
num_cols = df_model.select_dtypes(include=[np.number]).columns.tolist()
X = df_model[num_cols].copy()

Handle inf/nan
X = X.replace([np.inf, -np.infl, np.nan)
X = X.fillna(0)

interpretation_cols = [
"Amount', 'Amount Weekly Mean', 'Transaction Count Weekly',
'Amount_Above 90th', 'Amount_Above 95th',
'Frequency_Above_90th', 'Frequency_Above_95th',
'Transaction_to_Merchant_Mean_Ratio',
'Weekly_Unique_Vendors', 'Vendor_Diversity_Ratio',
'Weekly_Amount_Delta', 'Weekly_Frequency_Delta',
'Weekly_Weekend_Spend_Proportion', 'Is_Round_Amount'

]

interpretation_cols = [c for c in interpretation_cols if c in X.columns]

Standardize features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Visualize a few features
features = [
"Amount",
"Weekly_Amount_Delta",
"Weekly_Unique_Vendors",
"Vendor_Diversity_Ratio",

]

clean for plotting
plot_df = df[features].replace([np.inf, -np.inf], np.nan).dropna()

Histograms
for col in features:
plt.figure(figsize=(6,4))
Use bins robust to outliers
series = plot_df[col]l.clip(lower=plot_df[col].quantile(0.01),
upper=plot_df[col]l.quantile(0.99))
plt.hist(series, bins=40)
plt.title(f"{col} — Distribution™)
plt.xlabel(col)
plt.ylabel("Count")
plt.grid(True, alpha=0.3)
plt.tight_layout()

Count

Count

140000 -

120000 -

100000 -

80000 ~

60000 ~

40000 -

20000 ~

Amount - Distribution

0 -

.

I
1000 2000
Amount

Weekly Amount Delta - Distribution

I
3000

I
4000

120000 -

100000 -

80000 -

60000 ~

40000 -

20000 ~

I
—2000

—1000 0
Weekly Amount_Delta

1000

2000

Weekly Unique Vendors - Distribution

250000 A

200000 ~

150000 -

Count

100000 -

50000 -+

I I T
100 150 200
Weekly_Unique_Vendors

Vendor Diversity Ratio - Distribution

20000 A

15000 A

Count

10000 -

3000 -

0.5 1.0 1.5 2.0
Vendor_Diversity Ratio

2. PCA (PyOD)

Principal Component Analysis (PCA) projects high-dimensional data onto a lower-
dimensional space that captures the directions of maximum variance. In PyOD's PCA for

anomaly detection, points with large reconstruction errors or extreme projection
distances are flagged as outliers.

Fit PCA (PyOD)

pca = PyODPCA(
contamination=0.05,
n_components=None,
random_state=42,
weighted=True

)

pca.fit(X_scaled)

Scores & labels

pca_scores = pca.decision_function(X_scaled)
pca_labels = pca.predict(X_scaled)
pca_threshold = pca.threshold_

Attach to full df for summaries
df_full['pca_score']l = pca_scores
df_fulll'pca_flag']l = pca_labels

3. Isolation Forest (PyOD)

Isolation Forest isolates anomalies by randomly partitioning the data; outliers are easier
to separate and hence require fewer splits. The model builds many random trees and
assigns an anomaly score based on how quickly a point becomes isolated across trees.

iforest = IForest(

contamination=0.05,

n_estimators=300,

max_samples="auto',

random_state=42,

behaviour='new' if 'behaviour' in IForest.__init__._code__.co_varnames
)
iforest.fit(X_scaled)

if_scores = iforest.decision_function(X_scaled)
if_labels = iforest.predict(X_scaled)
if_threshold = iforest.threshold_

df_full['iforest score'] = if_scores
df_full['iforest_flag'] = if_labels

4. Summary Statistics & Anomalous Case Sizes

def summarize_flags(df_in, flag_col, score_col, method_name):
out = {}
n = len(df_in)
n_out = int(df_in[flag_col].sum())
pct_out = 100 * n_out / n if n > 0 else 0

out['method'] = method_name
out['n'] =n
out['n_anomalies'] = n_out
out['pct_anomalies'] = round(pct_out, 2)

out['threshold'] = df_in[score_col].quantile(0.95) if 'pca' in method_nc

Group means on interpretable features

cols_to_summarize = interpretation_cols.copy()

if score_col not in cols_to_summarize:
cols_to_summarize.append(score_col)

available = [c for c in cols_to_summarize if c in df_in.columns]

group_means = (

df_in.assign(Group=np.where(df_in[flag_col] == 1, 'Outlier', 'Normal
.groupby('Group') [availablel
.mean ()
.round(2)

)

out['group_means'] = group_means
return out

pca_summary = summarize_flags(df_full, 'pca_flag', 'pca_score', 'PCA'")
if_summary = summarize_flags(df_full, 'iforest_flag', 'iforest_score', 'Isc

print("Size of Anomalous Cases:")

print(f"PCA —> anomalies: {pca_summary['n_anomalies']} of {pca_summary['n']]}

" ({pca_summary['pct_anomalies']}%)")

print(f"Isolation Forest —> anomalies: {if_summary['n_anomalies']} of {if_st

f*({if_summary['pct_anomalies']}%)\n")

print("PCA Group Means (selected features):")
display(pca_summary['group_means'])

print("Isolation Forest Group Means (selected features):")
display(if_summary['group_means'])

Size of Anomalous Cases:

PCA —> anomalies: 22123 of 442458 (5.0%)

Isolation Forest —> anomalies: 22123 of 442458 (5.0%)
PCA Group Means (selected features):

Amount Amount_Above_95th Transaction_to_Merchant_Mean_Ratio

Group
Normal 339.72 0.04 -1.570690e+11
Outlier 2045.06 0.28 2.984296e+12

Isolation Forest Group Means (selected features):

Amount Amount_Above_95th Transaction_to_Merchant_Mean_Ratio
Group
Normal 288.37 0.04 -7.514289e+10

Outlier 3020.69 0.37 1.427708e+12

Weekly_U

Weekly_U

5. Overlap Analysis (Potential Fraudulent Transactions)

df_full['both_flag'] = ((df_full['pca_flag'] == 1) & (df_full['iforest_flag'
n_both = int(df_fulll'both_flag'].sum())

pct_of_pca = round(100 * n_both / max(1l, int(df_fulll['pca_flag'].sum())), 2)
pct_of_if = round(100 * n_both / max(1l, int(df_full['iforest_flag'].sum()))

print("\n=== Overlap (flagged by BOTH PCA & Isolation Forest) ===")
print(f"Count: {n_both}")

print(f"As % of PCA anomalies: {pct_of_pcal}%")

print(f"As % of iForest anomalies: {pct_of_if}%")

=== QOverlap (flagged by BOTH PCA & Isolation Forest) ===
Count: 13974

As % of PCA anomalies: 63.17%

As % of iForest anomalies: 63.17%

6. Diagnostics Plots (score distributions)

PCA score histogram

plt.figure()

plt.hist(df_full['pca_score'], bins=50)
plt.axvline(pca_threshold, linestyle='--"')
plt.title("PCA Anomaly Score Distribution")
plt.xlabel("PCA score (higher = more abnormal)")
plt.ylabel("Count")

plt.grid(True, alpha=0.3)

plt.show()

PCA Anomaly Score Distribution

400000 -

300000

Count

200000 -

100000 +

T T T T
0 100000 200000 300000 400000
PCA score (higher = more abnormal)

Isolation Forest score histogram
plt.figure()

plt.

hist(df_full['iforest_score'l, bins=50)

plt.axvline(if_threshold, linestyle='—-")
plt.title("Isolation Forest Anomaly Score Distribution")
plt.xlabel("iForest score (higher = more abnormal)")
plt.ylabel("Count")
plt.grid(True, alpha=0.3)
plt.show()
Isolation Forest Anomaly Score Distribution
60000 A

50000 A

40000 -

Count

20000 -

10000 ~

30000 A

0 .
—0.20 —-0.15 -0.10 —0.05 0.00 0.05 0.10 0.15
iForest score (higher = more abnormal)

Bar chart of anomaly counts
labels = ['PCA', 'Isolation Forest', 'Both'l]
values = [

plt.
plt.
plt.
plt.
plt.
plt.

int(df_fulll'pca_flag'].sum()),
int(df_fulll['iforest_flag']l.sum()),
n_both

figure()

bar(labels, values, edgecolor='black')
title("Anomaly Counts by Method")
ylabel("Count")

grid(True, axis='y', alpha=0.3)

show()

20000 -

15000 A

Count

10000 ~

5000 A

Anomaly Counts by Method

PCA Isolation Forest Both

Amount vs PCA Score

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure()

scatter(df_full['pca_score'], df_full['Amount'], s=5)
axvline(pca_threshold, linestyle='—-")

title("Amount vs PCA Score")

xlabel("PCA score")
ylabel("Amount™")
grid(True, alpha=0.3)
show()

Amount vs PCA Score
2.00 1e6

175 ~

1.50

1.25 4

1.00

Amount

0.75

0.50

0.25 1

]
! .
0.00 L— L] L] - L] -
1
T
0

T T T T
100000 200000 300000 400000
PCA score

7. Business Insight

This section summarizes the main findings from both PCA and Isolation Forest models.
Each method reveals a different dimension of abnormal spending behavior, allowing for a
more complete picture of potential fraud or policy violations in the dataset.

What I found:

PCA flagged 22,123 transactions (5.00%), while Isolation Forest also flagged 22,123
transactions (5.00%). There is an overlap of 13,974 records that were flagged by both
methods (these overlapping transactions represent the strongest signals and should be
prioritized for review).

PCA results interpretation:

PCA outliers tend to have unusually large reconstruction errors, meaning they deviate
significantly from the normal pattern across multiple spending attributes at once. These
transactions often combine a high Amount with an atypical cadence or vendor mix.

¢ |n this dataset, PCA outliers showed a higher mean Amount (2,045.06) compared to
normal transactions (339.72), reinforcing the unusual-spend narrative.

Isolation Forest interpretation:

Isolation Forest identifies anomalies by isolating rare combinations of features through
random partitions. Transactions that are easy to isolate—those that stand out strongly
from the rest—receive higher anomaly scores.

¢ |n this dataset, Isolation Forest outliers showed a higher mean Amount (3,020.69)
compared to normals (288.37), which suggests these anomalies are driven by
extreme spending spikes, elevated weekly frequency, or large fluctuations in
transaction behavior.

What looks suspicious (potential fraud or policy violations):

e High-Amount spikes and large positive Weekly_Amount_Delta, indicating one-off
big purchases or possible split transactions.

e Elevated Transaction Count Weekly combined with greater Weekly_Unique_Vendors
or Vendor_Diversity_Ratio, suggesting vendor hopping or unusual spending
dispersion.

e Transactions flagged by both PCA and Isolation Forest, as they represent structural
deviations (from PCA) and statistical rarity (from Isolation Forest).

Business actionability:

e Prioritize manual review for transactions flagged by both methods.

e Establish monitoring rules for Amount spikes, vendor diversity changes, and round-
amount patterns that may indicate unusual spending habits.

e Incorporate analyst feedback into future model iterations by refining input features
(e.g., merchant risk tiers, time-of-day/week trends) and re-evaluating the
contamination rate to improve detection accuracy.

